CHM 3400-11291: Physical Chemistry (for the Biosciences)

Instructor:	David Wei, 311D Chemistry Lab Building (CLB), <u>wei@chem.ufl.edu</u> , 352-392-2050
Lectures:	M, W, F 3 rd period (9:35 AM-10:25 AM) Location: LEI207
Office	M(10:30-11:30 AM), F(10:30-11:30 AM) or by appointment
hours:	Location: CLB311D
TA:	Namodhi Wijerathne, wijerathne.h@chem.ufl.edu
	Office Hours: T(5:00-6:00 PM) and Th(5:00-6:00 PM) Location: CLB313
Aims:	To provide students with a solid understanding of the concepts of physical chemistry and their application to chemical and biological systems.
Textbook:	Physical Chemistry for the Biosciences, by Raymond Chang; University Science Books, Sausalito, CA. ISBN #1-891389-33-5.
Homework:	Problem sets will be made available throughout the semester, which will be graded. Assignments should be hand-written or printed and turned in before class on the due date . Please write your name and UFID clearly on each page.
Exams:	The course consists of three in-class exams during the semester as well as a comprehensive final. The exams will cover homework problems and will emphasize understanding of the lecture materials and problem solving. All exams will be <u>closed book</u> . Only for the final exam : you can bring one hand-written letter-size sheet with your own notes with formula etc. that aid understanding of the course. Exam I: Fri. Sep. 17 in class Exam II: Fri. Oct. 15 in class Exam III: Fri. Nov. 19 in class Final comprehensive exam : Thursday Dec. 16 3-5 pm, LEI207.

Fall Semester 2021 (3 credits)

Grading:	The in-class exams are worth 100 points. You are allowed to choose two higher scores to be counted in your final grade. The final comprehensive exam is worth 200 pts. The total points for homework are 100 pts: each one is worth maximum point if turned in on time, and late submission will incur a 2 pts deduction per day. The assignments will also be graded for content. Total = $200 + 200 + 100 = 500$ points Proposed Grade Levels: A: $450 - 500$ A-: $420 - 449$ B+: $390 - 419$ B: $360 - 389$ B-: $340 - 359$ C+: $320 - 339$ C: $300 - 319$ C: $280 - 299$ D+: $265 - 279$ D: $250 - 264$ E: 249 and below
Course policies:	Attendance will not be recorded, but participation in lectures and demonstration periods is important in assimilating the course material. Since exams are during normal class hours, make-up exams are granted solely at the discretion of the instructor. Any request for make-up exams should have a legitimate excuse, and be made to Dr. Wei no later than 1 week prior to the exam date. Students should also familiarize themselves with the UF Student Honor Code posted on the web at www.chem.ufl.edu/~itl/honor.html. Students with disabilities must first register with the Dean of Students Office; the Dean of the Students Office will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation.
Canvas e- learning site	All communications must be done through the e-learning site, including homework, deadlines, grades, and announcements. It is your responsibility to check this site for updates. Please do not email the instructors (or the TAs) personal email accounts.
Online course evaluation:	Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at https://gatorevals.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals, or via https://ufl.bluera.com/ufl/.

Introduction		
Ideal and real gases		
Kinetic gas theory		
Maxwell distribution laws and molecular collisions		
First Law of Thermodynamics		
Heat capacity and gas expansions		
Calorimetry		
Second Law of Thermodynamics: Entropy		
Second Law of Thermodynamics: Entropy		
Second Law of Thermodynamics: Carnot engine, entropy change		
Third Law of Thermodynamics, Gibbs free energy		
Phase equilibria		
Ideal solutions, chem. potential		
Colligative properties		
Thermodynamics of mixing, real solutions		
Electrolyte solutions		
Colligative properties of electrolyte solutions, biological membranes		
Chemical equilibrium		
Ligand binding to macromolecules		
Bioenergetics		
Electrochemistry		
Chemical kinetics		
Molecularity of reaction		
Effect of temperature and PES		
Reaction rate theories, reactions in solution		
Enzyme catalysis		
Enzyme catalysis II		
Foundation of quantum mechanics		
Heisenberg uncertainty principle, Schrödinger equation		
Atomic orbitals and periodic table		
The chemical bond		
Molecular orbital theory		
Coordination compounds		
Spectroscopy: fundamentals and micro-wave		
Infrared and electronic spectroscopy		
Magnetic resonance		
Luminescence, lasers, optical activity		

Tentative Lecture Schedule CHM 3400