

INSTRUCTOR: Dr. Maria Korolev
Email (for administrative purposes): korolev@ufl.edu
Office hours: MWF 5th period and TR 5th – 6th period in Flint 251

COURSE SCHEDULE (the lecture schedule is **tentative**, but exam dates will not change)

<table>
<thead>
<tr>
<th>Dates</th>
<th>Topics (# of lectures)</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 11 – 12</td>
<td>Introduction and Review (2)</td>
<td>Chap. 1–2</td>
</tr>
<tr>
<td>May 13 – 19</td>
<td>Mass Relations and Stoichiometry (3-4)</td>
<td>Chap. 3</td>
</tr>
<tr>
<td>May 20 – 29</td>
<td>Aqueous Reactions (3-4)</td>
<td>Chap. 4</td>
</tr>
</tbody>
</table>
| **Monday, June 1st**
| (7:00-9:00 pm) | **Progress Exam 1** | **Chaps. 1–4** |
| Jun 2 – 5 | Enthalpy & Calorimetry (3) | Chap. 6 |
| Jun 8 – 9 | Atomic Structure (2) | Chap. 7 |
| Jun 10 – 16 | Electron Configuration and Periodic Trends (4) | Chap. 8 |
| Jun 17 – 19 | Chemical Bonding Models (2) | Chap. 9 |
| **Monday, June 29th**
| (7:00-9:00 pm) | **Progress Exam 2** | **Chaps. 1–4, 6–9** |
| Jun 30 – Jul 2 | Molecular Geometry (2) | Chap. 10 |
| Jul 6 – 7 | Covalent Bonding Theories (2) | Chap. 11 |
| Jul 8 – 9 | Gases (3) | Chap. 5 |
| Jul 13 – 16 | Intermolecular Forces and Liquids and Solids (3-4) | Chap. 12 |
| **Monday, July 20th**
| (7:00-9:00 pm) | **Progress Exam 3** | **Chaps. 1–12** |
| Jul 21 – 24 | Solutions (4) | Chap. 13 |
| Jul 27 – 31 | Chemical Kinetics (4) | Chap. 16 |
| **Tuesday, August 4th**
| (7:00-9:00 pm) | **Final Exam** | **Cumulative** |

Holidays (no classes): May 25th (Memorial Day), June 22nd – 26th (Break), July 3rd (Independence Day)
REQUIRED MATERIALS:
LearningCatalytics provided as a free-trial by Pearson

COURSE INFO: CHM 2045 and CHM 2045L constitute the first semester of the two term sequence of General Chemistry, CHM 2045/2045L - 2046/2046L. Prerequisite information and credit suitability can be found in the Undergraduate Catalog. Requirements for class attendance and make-up exams, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

COURSE OBJECTIVES: As both a general education requirement and major’s course, CHM2045 serves to teach: the scientific method, skills for problem solving, general chemistry knowledge, and a connection to the principles that govern the natural world.

GRADES: Grades for the term will be determined as follows:

<table>
<thead>
<tr>
<th>Grade Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress Exams (best 2 of 3 @ 250 pts)</td>
<td>500 pts</td>
</tr>
<tr>
<td>Final Cumulative Exam</td>
<td>300 pts</td>
</tr>
<tr>
<td>Online Tutorials</td>
<td>100 pts</td>
</tr>
<tr>
<td>Clickers / Worksheets</td>
<td>100 pts</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1000 pts</td>
</tr>
</tbody>
</table>

The following grade cutoffs will be used (these are non-negotiable):
900-1000 = A 860-899 = A- 830-859 = B+ 800-829 = B
760-799 = B- 730-759 = C+ 700-729 = C 660-699 = D+
630-659 = D 600-629 = D- < 600 = E

Information on current UF grading policies for assigning grade points can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx

CANVAS (http://lss.at.ufl.edu): Here you will find the syllabus, your online tutorials, the gradebook, lecture videos, files, class announcements, and other pertinent info for the course. It is your responsibility to check Canvas often to make sure that you do not miss important announcements and to ensure that your gradebook is accurate. For computer assistance, visit http://helpdesk.ufl.edu/.

TUTORIALS: These are your homework assignments that are found online in Canvas. They will be due Wednesdays and Sundays. You can earn up to 100 points toward your grade doing these online tutorials.

CLICKERS AND WORKSHEETS: Ten percent of the course grade (100 points) will be based on performance on in-class clicker questions and in-discussion worksheets. You can earn points in class by correctly answering clicker questions through LearningCatalytics (1 point per each correct answer). You can also earn points by completing worksheets in the discussion sections (5 points per worksheet). You can earn up to 100 total points total through both of these combined scores. It is recommended that
you do the worksheets in the discussion sections, even if you are answering questions correctly in class. These will be the best preparation for the progress exams that will determine your grade.

DISCUSSION CLASSES: The Discussion Classes meet every week and your attendance is expected. You must go to your assigned discussion section. Your discussion sections will contain weekly **Worksheets** that will count toward your overall grade. Each of these is worth 5 points.

CONTACTING THE INSTRUCTOR / OFFICE HOURS: Emails are for administrative purposes only, and not for distance-instruction. All academic inquiries must be made during office hours or before/after lectures (if time permits). If this is not possible, visit the CLC (see below). Please be prepared before coming to office hours, bring specific questions and your previous work.

CLASS DEMEANOR: In order to have an optimal learning environment, the classroom needs to be free of disruptions. Therefore, it is expected that students come to class on time and leave only when class is concluded by the instructor, and that the class is not disrupted by student talking or cell phone noises.

CHEMISTRY LEARNING CENTER (CLC): There is **free help** to be had from graduate student teaching assistants in the CLC Monday through Friday in Flint Hall 257. Your discussion TA will have office hours in the CLC, but you may go there anytime any TA is assigned there to get help on questions pertaining to chemistry. A schedule of the TA schedules will be posted in the corridor outside the CLC and also online. Additionally, there is the **teaching center** located on the ground floor of Broward Hall, if you’d like to use that resource. Their web site is http://www.teachingcenter.ufl.edu.

EXAMS: Exams will be taken in the evenings outside of class and the Exam Room Assignments will be posted. You must use a non-graphing non-programmable scientific calculator on exams (with log, ln, root, and exponent (scientific notation) functions). Be sure to also bring pencils, section number, and your UF ID card. No notes, papers, cell phones or other electronic devices can be in view during exams.

No makeup (“do over”) progress exams will be given for any reason. Conflict exams will be administered for officially sanctioned events and medical reasons as per university policy and this document: http://iteach.chem.ufl.edu/file.php/1/Exam_Absence_Policy_GChem_s13.pdf. If you must be absent for an exam due to a documented and approved academic or UF athletic conflict, bring the documentation to your instructor at least one week prior to the scheduled exam and an early conflict exam will be scheduled for you. To alleviate the stress of potential absences that do not fall under officially-sanctioned absences, we've incorporated a dropped-exam policy (the best 2 of 3 Progress Exams will be counted toward your grade - see under “GRADES” below).

Scantrons may be checked only during office hours the week following the posting of the exam score in your Canvas gradebook. Bubbling errors will not be negotiated, and a 5 point penalty will be applied for failure to bubble in a form code, UFID, or not taking the exam in the assigned room.

HONOR CODE: UF students are bound by The Honor Pledge which states, “We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the
University of Florida, the following pledge is either required or implied: “On my honor, I have neither
given nor received unauthorized aid in doing this assignment.” The Honor Code
(https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx) specifies a number of behaviors
that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report
any condition that facilitates academic misconduct to appropriate personnel. If you have any questions
or concerns, please consult with the instructor of TAs in this class.

DISABILITIES: Students with disabilities requesting accommodations should first register with the
Disability Resource Center (352-392-8565, http://www.dso.ufl.edu/drc/) by providing appropriate
documentation. Once registered, students will receive an accommodation letter which must be
presented to the instructor when requesting accommodation. The student is responsible for scheduling
the exam dates with the DRC. Students with disabilities should follow this procedure as early as possible.

EVALUATIONS: Students are expected to provide feedback on the quality of instruction in this course by
completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the
last two or three weeks of the semester, but students will be given specific times when they are open.
Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

PROGRAM OBJECTIVES: Physical science courses provide instruction in the basic concepts, theories and
terms of the scientific method in the context of the physical sciences. Courses focus on major scientific
developments and their impacts on society, science and the environment, and the relevant processes
that govern physical systems. Students will formulate empirically-testable hypotheses derived from the
study of physical processes, apply logical reasoning skills through scientific criticism and argument, and
apply techniques of discovery and critical thinking to evaluate outcomes of experiments.

These objectives will be accomplished through participation in the course lectures and discussion
sections, and individual work done on homework assignments and assessments.

GENERAL EDUCATION STUDENT LEARNING OUTCOMES: The following learning outcomes will be
assessed through online assessments and examinations.

<table>
<thead>
<tr>
<th>Area</th>
<th>Institutional Definition</th>
<th>Institutional SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENT</td>
<td>Content is knowledge of the concepts, principles, terminology and methodologies used within the discipline.</td>
<td>Students demonstrate competence in the terminology, concepts, methodologies and theories used within the discipline.</td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td>Communication is the development and expression of ideas in written and oral forms.</td>
<td>Students communicate knowledge, ideas, and reasoning clearly and effectively in written or oral forms appropriate to the discipline.</td>
</tr>
<tr>
<td>CRITICAL THINKING</td>
<td>Critical thinking is characterized by the comprehensive analysis of issues, ideas, and evidence before accepting or formulating an opinion or conclusion.</td>
<td>Students analyze information carefully and logically from multiple perspectives, using discipline specific methods, and develop reasoned solutions to problems.</td>
</tr>
</tbody>
</table>

SPECIFIC GOALS: CHM 2045/2046 (General Chemistry)
You will be required to analyze scientific concepts and think critically. This means being able to answer both quantitative (mathematical) and conceptual (quantitative) multiple choice problems in a limited period of time. Additionally you will have to write or orally communicate during your discussion periods. We will also demonstrate how these topics can be applied to the scientific method and how observation and experimentation leads us to the development of scientific theories. To achieve this, students will be introduced to the following concepts from the textbook.

You will review the importance of chemistry in our everyday lives. You will be required to utilize the methods of science as a logical means of problem solving through critical thinking. This means you must analyze information carefully and logically from multiple perspectives, using discipline specific methods, and develop reasoned solutions to problems. To ensure your competency in these concepts you will be required to complete online homework assignments and take quizzes and exams that require critical thinking, analysis of problems and drawing conclusions.

Critical Thinking: Critical thinking skills are essential in the general chemistry course. There are six criteria by which we promote critical thinking:

1. **Information acquisition:** Identifying and differentiating questions, problems and arguments.
2. **Application:** Assessing the suitability of various methods of reasoning and confirmation when approaching a problem. Students are taught to develop hypotheses and to find support and limitations associated with their hypotheses.
3. **Analysis:** Identifying and analyzing stated and unstated assumption and using logical reasoning to evaluate different viewpoints.
4. **Synthesis:** Students are encouraged to formulate questions and problems, construct arguments to address such questions and be able to effectively communicate conclusions.
5. **Communication:** In discussion of alternative points of view, students will be encouraged to criticize or defend their arguments with the use of logical reasoning and evidence.
6. **Evaluation:** Assessing the quality of evidence and reasoning to draw reasonable conclusions.

Mathematics: It is crucial in the general chemistry course to be competent in mathematics. Listed are the criteria by which we promote understanding and application of math:

1. **Information acquisition:** Students learn to select data that is pertinent to solving a problem.
2. **Application:** Use of algebraic, geometric and statistical reasoning to solve problems.
3. **Analysis:** Interpret and draw conclusions from formulas, graphs and tables.
4. **Synthesis:** To associate patterns and observations to more abstract principles and to consider specific applications of such principles.
5. **Communication:** Communicating information symbolically, graphically, numerically and verbally.
6. **Evaluation:** Estimate and verify solutions to mathematical problems to determine reasonableness, compare alternatives and select optimal results and understand the limitations of mathematical and statistical methods.

DISCLAIMER: This syllabus represents my current plans and objectives. If those need to change as the semester progresses, then the changes will be communicated to the class clearly.