CHM 6490: Molecular Spectroscopy, Spring 2014

CHM6490 is a 3-credit hour "core" graduate course covering the theory of the various forms of molecular spectroscopy.

Instructor: Prof. Clifford R Bowers 2360 NPB bowers@chem.ufl.edu

Office Hours: MW 7-8th periods

<u>Meeting Place and Time:</u> T, 7th period: MCCB, 1108 R: 7-8th period: MAT 0116

<u>Primary Course Text:</u> Symmetry and Spectroscopy, An Introduction to Vibrational and Electronic Spectroscopy, Daniel C. Harris and Michael D. Bertolucci.

Additional Texts to be used to prepare lectures:

Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Edgar Bright Wilson. Spin Dynamics: Basics of Nuclear Magnetic Resonance, Malcolm H. Levitt.

Grading scheme:

Midterm Exam	30%
Final Exam	30%
In-class quizzes	30%
Term Project	10%

Quizzes: There will be 5 (unannounced) in-class quizzes. The best 3/5 will be used in grade calculation.

Term Paper: Each student will prepare a written term paper on a specific application of molecular spectroscopy. Students will present a summary of their paper in front of the class in the final week of the semester.

Homework: Will be regularly assigned but not collected or graded.

Tentative schedule

Weeks 1-2: Propagation of electromagnetic waves and optics

Maxwell's Equations Plane waves in isotropic media Polarization Vector Birefringence and index ellipsoid Polarization states of photons Ray propagation

Week 3: Transitions rates and selection rules

Time-dependent perturbation theory Transition dipole moment Selection rules Examples

Weeks 4-5: Group Theory

Symmetry elements/operations Point groups Character tables Reducible representations

Weeks 6-7: Vibrational spectroscopy

Infrared and Raman spectroscopy Diatomic molecules Anharmonic corrections Population distributions Diatomics Normal modes Selection rules and polarization Overtone transitions and combination bands Vibrational analysis Computation of vibrational spectra

Weeks 8-9: Electronic spectroscopy

Molecular orbitals and term symbols Selection rules Franck-Condon principle Spin selection rules Orbital selection rules

Weeks 10-13: Magnetic Resonance Spectroscopy

Magnetic moments Spin dynamics - Bloch equations Rotating frame transformation Spin functions Spin Hamiltonians Transition intensities Density matrix formalism Liouville-von Neumann equations Relaxation

Week 14: Term paper presentations