CHM 6461: Introduction to Statistical Thermodynamics, Fall 2014

Instructor: Prof. Russ Bowers Email: bowers@chem.ufl.edu Office: Physics Building, Room 2346 Office Hours: To be determined. Meeting Place and Time: MWF 2nd Period (8:30-9:20), Leigh 104 (Subject to change)

Classes begin/end: August 25/December10

Holidays, no class meetings

Monday, September 1: Labor Day Friday, October 17: Homecoming WednNovember 26-28: Thanksgiving break

Grading scheme

Midterm Exam	35%
Final Exam	35%
In-class quizzes	30%

Quizzes: There will be 5 (unannounced) in-class quizzes. The best 3/5 will be used in grade calculation.

Homework: Will be regularly assigned but not collected or graded.

Texts

- 1. Michel Le Bellac, Fabrice Mortessagne and G. George Batrouni, <u>Equilibrium and Non-Equilibrium Statistical Thermodynamics</u>, Cambridge University Press (available as ebook), eISBN: 9780511193705
- 2. Donald A. McQuarrie, <u>Statistical Mechanics</u> (Hardcover), Publisher: University Science Books; 2nd edition (May 2000), ISBN-10: 1891389157, ISBN-13: 978-1891389153
- Terrell L. Hill, <u>An Introduction to Statistical Thermodynamics</u> (Paperback and available as ebook), Dover Publications (January 1, 1987) ISBN-10: 0486652424, ISBN-13: 978-0486652429

Tentative Schedule

Weeks 1-2	Unit 1: Thermostatics Review	
	Microscopic and macroscopic variables	
	Work, heat, internal energy	
	Thermal equilibrium	
	Postulate of maximum entropy	
	Intensive variables	
	Maximum work, heat engines	
	Thermodynamic potentials	
	Specific heats	
	Gibbs-Duhem relations	
	Statbility condition	
	Third Law	
Weeks 3-5	Unit 2: Statistical entropy and Boltzmann distributions	
	Time evolution in quantum mechanics	
	Density operators and time evolution	
	Quantum phase space	
	P,F,E relation for a monatomic ideal gas	
	Statistical entropy	
	Time Evolution of statistical entropy	
	Equilibrium distributions	
	Legendre transformations	
	Canonical and grand canonical ensembles	
	Heat and work	
	Entropy and temperature: 2 nd Law	
	Entropy of mixing	
	Pressure and chemical potentials	
	Irreversibility and growth of entropy	
Weeks 6-8	Unit 3: Canonical and grand canonical ensembles	
	Mean values and fluctuations	
	Partition function and ideal gas	
	Paramagnetism	

	Ferromagnetism and Ising Model	
	Classical statistical mechanics	
	Maxwell distributions	
	Equipartition theorem	
	Partition function of diatomic and polyatomic molecules	
	Chemical Potentials	
	Coexistence of phases	
Weeks 9-11	Unit 4: Quantum Statistics	
	Bose-Einstein and Fermi-Dirac distributions	
	Grand partition function	
	Maxwell-Boltzmann classical limit	
	Ideal Fermi gas	
	Debye model: simple model of vibrations in solids	
	Spin waves and spin-wave dispersion in 1D	
Weeks 12-15	Unit 5: Chemical Equilibrium	
	Rates of chemical reactions	
	Absolute rate theory	