CHM 4300L – Laboratory in Biochemistry and Molecular Biology

Instructor
Alix Rexford
Leigh Hall 302
alix.rexford@chem.ufl.edu

Office Hours
Monday 11:00 - 12:30 pm
Wednesday 12:30 - 2:00 pm
Or by appointment

Laboratory Manual
Characterization of TEM1 β-Lactamase and Discovery of Inhibitors from Streptomyces
Available at Target Copy Center

Class Meetings
Pre-laboratory lecture: Wednesday 10:40 – 11:30 AM; Leigh Hall 104
Laboratory: Section 11529 Thursday 9:35 – 12:35 PM; Leigh Hall 200
Section 11530 Thursday 12:50 – 3:50 PM; Leigh Hall 200

Course Description
This course provides a practical, hands-on understanding of modern, fundamental techniques relevant to molecular biology and biochemistry. The laboratory covers topics including DNA cloning and manipulation, basic bioinformatic analyses, protein overexpression and purification, along with enzyme kinetic measurements. Additionally, this course covers the discovery of enzyme inhibitors and antibiotics from natural sources.

Laboratory Attire
Safety glasses, closed toe shoes, hair pulled back, no loose clothing or jewelry.

Honor Code
I expect each of you to follow the Student Honor Code, available on the web (https://scrr.dso.ufl.edu/policies/student-honor-code-student-conduct-code/)
You are expected (1) to uphold the highest standards of academic integrity in the student's own work, (2) to refuse to tolerate violations of academic integrity in the University community, and (3) to foster a high sense of integrity and social responsibility on the part of the University community. Violations of the Honor Code will be reported to the Dean of Students, and may result in failure of the assignment in question and/or the course.

Class Attendance
Attendance is required for all lab sessions. **Please be on time!** Your performance grade depends on coming to lab on time, **with proper safety attire**, and having read the experiment thoroughly in advanced. Proper preparation will allow you to work quickly to complete the lab in a timely manner. Due to the continuity of the labs in the course, missed labs cannot be made up. If you miss a lab due to **an approved absence with appropriate documentation**, accommodations will be made.
Grading

Point Distribution

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory notebooks</td>
<td>200 pts</td>
</tr>
<tr>
<td>Lab Report 1 (due Oct. 9)</td>
<td>100 pts</td>
</tr>
<tr>
<td>Lab Report 2 (due Dec. 2)</td>
<td>100 pts</td>
</tr>
<tr>
<td>Quizzes</td>
<td>50 pts</td>
</tr>
<tr>
<td>Lab Performance</td>
<td>50 pts</td>
</tr>
</tbody>
</table>

The following letter grades will be assigned based upon total points accrued for all course work:

- **A**: 500 – 450 pts
- **B**: 449.9 – 400 pts
- **C**: 399.9 – 350 pts
- **D**: 349.9 – 300 pts
- **F**: below 300 pts

Assignments

Notebooks will be graded during the semester for accuracy and completeness. **Laboratory notebooks do not leave the lab.**

- **Lab report 1** will cover labs 1 – 4, 5 (parts 1 – 4), 6 (part 1 – 3), 7 (part 1) **due Oct. 9**
- **Lab report 2** will cover labs 5 (part 5), 6 (part 4), 7 (parts 2 – 3), and 8 – 12 **due Dec. 2**

Guidelines for lab reports will be given 2 weeks before the due dates.

Quizzes will be given periodically during pre-lab lecture to cover basic principles and concepts related to the labs. There are **no makeup quizzes.** If you miss a quiz due to an approved absence with appropriate documentation, accommodations will be made.

The experiments in this course are arranged in a series, and the product from one week serves as the starting material for the next. If you have problems, you will be provided with intermediate materials with no grade penalty; however, you will be expected to analyze critically where the problem(s) lay in your lab report, and this analysis will be graded.

Students with Disabilities

Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation. Contact the Disability Resources Center (http://www.dso.ufl.edu/drc/) for information about available resources for students with disabilities.

Course Evaluations

Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at gatoreval.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals, or via ufl.bluera.com/ufl/. Summaries of course evaluation results are available to students at gatoreval.aa.ufl.edu/public-results/
Laboratory Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Lab - Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 22</td>
<td>1 – Isolation of Streptomyces strains from soil</td>
</tr>
</tbody>
</table>
| Aug. 29 | 2 – PCR amplification of *tem1*
| | Picking candidate *Streptomyces* colonies |
| Sept. 5 | 3 – Estimating the concentration of PCR products by gel electrophoresis
| | PCR clean up, digestion of the expression vector and PCR product
| | Restreaking of *Streptomyces* strain |
| Sept. 12 | 4 – Purification of DNA by preparative gel electrophoresis
| | Purification of DNA from agarose gels |
| Sept. 19 | 5 – DNA quantification of purified *tem1* DNA and pET28a vector DNA
| | Ligation of *tem1* DNA to pET28a vector DNA and transformation into
| | TOP10 cells |
| Sept. 26 | 6 – Screening pET28a recombinants for *tem1* insertion
| | Streaking of *Streptomyces* strains for antibiotic tests |
| Oct. 3 | 7 – Analysis of digested ligation products
| | Performing antibiotic tests |
| Oct. 10 | 8 – Pilot expression of recombinant BL21(dE3) pET28a-*tem1*
| | Extraction of *Streptomyces* cultures |
| Oct. 17 | 9 – SDS-PAGE analysis of the TEM1 pilot-scale induction experiments |
| Oct. 24 | 10 – Expression and purification of TEM1 from recombinant BL21(dE3) pET281-*tem1* |
| Oct. 31 | 11 – Analysis of TEM1 purification fractions by SDS-PAGE
| | Constructing a purification table for TEM1 purification |
| Nov. 1 | 12 – Kinetic and inhibition assays for TEM1 |