CHM 3400: Physical Chemistry (for the Biosciences) ## Spring Semester 2018 (3 credits) Instructor: Nicolas Polfer, 311C Chemistry Lab Building (CLB), polfer@chem.ufl.edu, 392-0492 **Office hours: M** (9:35-10:25 am), **T** (4:05-4:55 pm), **F** (3:00-3:50 pm) **CLB 313** **Lectures:** M,W,F 2nd period (8:30-9:20 am) **LEI 207** Office hours: m.bell04@ufl.edu (Matt Bell) W (11:45-12:35) R (12:50-1:40 pm) and **F** (1:55-2:45 pm) **CLB 313** Aims: To provide students with a solid understanding of the concepts of Physical Chemistry and their application to chemical and biological systems. **Text book:** Physical Chemistry for the Biosciences, by Raymond Chang; University Science Books, Sausalito, CA. ISBN #1-891389-33-5. **Home work:** Problem sets will be made available throughout the semester, which will be graded. **Exams:** The course consists of two in-class exams during the semester as well as a comprehensive final (May 3rd). The exams will cover homework problems and will emphasize understanding of the lecture material and problem solving. All exams will be <u>closed</u> book. Only for the final exam: you can bring one hand-written letter-size sheet (double-sided) with your own notes with formulae etc. that aid understanding of the course. **Exam I** Mon Feb 19th in class **Exam II** Mon Apr 9th in class Final comprehensive exam Wed May 3rd 5:30-7:30 pm, 207 LEI. #### Grading: The in-class exams are worth 100 points (2x100 = 200 pts max). The final comprehensive exam is worth 200 pts. The total points for homework are 100 point (9x11 + 1): each one is worth maximum point if turned in on time, and turning in late will cost 2 points per day. The homework assignments will also be graded for content. Total = (2x100) + 200 + 100 = 500 points ### **Proposed Grade Levels:** A: 461 – 500 A-: 441 - 460 B+: 421 - 440 B: 401 – 420 B-: 381 - 400 C+: 361 - 380 C: 341 - 360 C-: 321 - 340 D+: 301 - 320 D: 281 - 300 D-: 261 - 280 E: 260 and below #### Course policies: not Attendance will be recorded. but participation in lectures and demonstration periods is important in assimilating the course material. Since exams are during normal class hours, make-up exams are granted solely at the discretion of the instructor. Any request for make-up exams should have a legitimate excuse, and be made to Dr. Polfer as far in advance as possible. Students should also familiarize themselves with the UF Student Honor Code posted the web on www.chem.ufl.edu/~itl/honor.html. Students with disabilities must first register with the Dean of Students Office; the Dean of the Students Office will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation. Miscellaneous: Requests for letters of recommendation should only be made after the final exam. The class material can be found on the e-learning website http://elearning.ufl.edu/ ### **Tentative Lecture Schedule CHM 3400** | Date | Topic | Textbook | HW | |----------------|--|-------------------------------------|----| | M 01/08 | 1. Foundation of quantum | 11 (401-414) | | | | mechanics | | | | W 01/10 | 2. Heisenberg uncertainty principle, | 11 (414-426) | | | | Schroedinger equation | | | | F 01/12 | 3. Atomic orbitals and periodic table | 11 (426-439) | | | M 01/15 | No class (MLK Day) | | | | W 01/17 | 4. The chemical bond | 12 (447-458) | | | F 01/19 | 5. Molecular orbital theory | 12 (458-468) | | | M 01/22 | 6. Coordination compounds | 12 (469-483) | | | W 01/24 | 7. Spectroscopy: fundamentals and | 14 (513-526) | H1 | | | micro-wave | | | | F 01/26 | ipython workshop | (=== ===) | | | M 01/29 | 8. Infrared and electronic | 14 (527-539) | | | | spectroscopy | (================================== | | | W 01/31 | 9. Magnetic resonance | 14 (539-554) | H2 | | F 02/02 | 10. Luminescence, lasers, optical | 14 (554-568) | | | | activity | 0 (7 04) | | | M 02/05 | 11. Ideal and real gases | 2 (7-21) | | | W 02/07 | 12. Kinetic gas theory | 2 (21-25) | Н3 | | F 02/09 | 13. Maxwell distribution laws and | 2 (25-31) | | | | molecular collisions | • (00 40) | | | M 02/12 | 14. First Law of Thermodynamics | 3 (39-49) | | | W 02/14 | 15. Heat capacity and gas | 3 (49-59) | | | - 00/4/ | expansions | o (50.74) | | | F 02/16 | 16. Calorimetry | 3 (59-74) | H4 | | M 02/19 | Exam I (in-class) | 4 (04 04) | | | W 02/21 | 17. Second Law of | 4 (81-86) | | | - 00/00 | Thermodynamics: Entropy | 4 (07 05) | | | F 02/23 | 18. Second Law of | 4 (87-95) | | | | Thermodynamics: Carnot engine, | | | | B# 00/0/ | entropy change | A (OF 440) | | | M 02/26 | 19. Third Law of Thermodynamics, | 4 (95-110) | | | W 02/28
F 03/02
M 03/05
W 03/07
F 03/09 | Gibbs free energy 20. Phase equilibria 21. Ideal solutions, chem. potential No class (spring break) No class (spring break) No class (spring break) | 4 (110-117)
5 (127-131) | Н5 | |---|--|--|----| | M 03/12 | 22. Thermodynamics of mixing, | 5 (131-142) | | | W 03/14 F 03/16 M 03/19 | real solutions 23. Colligative properties 24. Electrolyte solutions 25. Colligative properties of electrolyte solutions, biological membranes | 5 (142-154)
5 (154-170)
5 (170-181) | Н6 | | W 03/21 F 03/23 | 26. Chemical equilibrium27. Ligand binding to macromolecules | 6 (193-203) 6 (209-217) | | | M 03/26 W 03/28 F 03/30 | 28. Bioenergetics29. Electrochemistry30. Chemical kinetics | 6 (217-229)
7 (sel. p.)
9 (311-324) | Н7 | | M 04/02
W 04/04
F 04/06 | 31. Molecularity of reaction32. Effect of temperature and PES33. Reaction rate theories,reactions in solution | 9 (324-332)
9 (332-336)
9 (336-342,
346-349) | Н8 | | M 04/09 W 04/11 | Exam II (in-class) Fitting data workshop | ŕ | | | F 04/13 | 34. Enzyme catalysis (guest lecture) | 10 (363-372) | | | M 04/16 | 35. Photochemistry and photosynthesis | 15 (575-586) | | | W 04/18 | 36. Vision and biological effects of radiation | 15 (586-594) | | | F 04/20 M 04/23 W 04/25 | Scientific paper review Review lecture I Review lecture II | | Н9 | W 05/03 Final exam