CHM 3400: Physical Chemistry (for the Biosciences)

Spring Semester 2018 (3 credits)

Instructor: Nicolas Polfer, 311C Chemistry Lab Building

(CLB), polfer@chem.ufl.edu, 392-0492

Office hours: M (9:35-10:25 am), **T** (4:05-4:55 pm),

F (3:00-3:50 pm) **CLB 313**

Lectures: M,W,F 2nd period (8:30-9:20 am) **LEI 207**

Office hours: m.bell04@ufl.edu

(Matt Bell) W (11:45-12:35) R (12:50-1:40 pm) and

F (1:55-2:45 pm) **CLB 313**

Aims: To provide students with a solid

understanding of the concepts of Physical Chemistry and their application to chemical

and biological systems.

Text book: Physical Chemistry for the Biosciences, by

Raymond Chang; University Science Books,

Sausalito, CA. ISBN #1-891389-33-5.

Home work: Problem sets will be made available

throughout the semester, which will be

graded.

Exams: The course consists of two in-class exams

during the semester as well as a comprehensive final (May 3rd). The exams will cover homework problems and will emphasize understanding of the lecture material and problem solving. All exams will be <u>closed</u>

book.

Only for the final exam: you can bring one hand-written letter-size sheet (double-sided) with your own notes with formulae etc. that

aid understanding of the course. **Exam I** Mon Feb 19th in class

Exam II Mon Apr 9th in class

Final comprehensive exam Wed May 3rd

5:30-7:30 pm, 207 LEI.

Grading:

The in-class exams are worth 100 points (2x100 = 200 pts max). The final comprehensive exam is worth 200 pts. The total points for homework are 100 point (9x11 + 1): each one is worth maximum point if turned in on time, and turning in late will cost 2 points per day. The homework assignments will also be graded for content.

Total = (2x100) + 200 + 100 = 500 points

Proposed Grade Levels:

A: 461 – 500

A-: 441 - 460

B+: 421 - 440

B: 401 – 420

B-: 381 - 400

C+: 361 - 380

C: 341 - 360

C-: 321 - 340

D+: 301 - 320

D: 281 - 300

D-: 261 - 280

E: 260 and below

Course policies:

not Attendance will be recorded. but participation in lectures and demonstration periods is important in assimilating the course material. Since exams are during normal class hours, make-up exams are granted solely at the discretion of the instructor. Any request for make-up exams should have a legitimate excuse, and be made to Dr. Polfer as far in advance as possible. Students should also familiarize themselves with the UF Student Honor Code posted the web on www.chem.ufl.edu/~itl/honor.html. Students with disabilities must first register with the Dean of Students Office; the Dean of the Students Office will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation.

Miscellaneous: Requests for letters of recommendation

should only be made after the final exam.

The class material can be found on the e-learning website http://elearning.ufl.edu/

Tentative Lecture Schedule CHM 3400

Date	Topic	Textbook	HW
M 01/08	1. Foundation of quantum	11 (401-414)	
	mechanics		
W 01/10	2. Heisenberg uncertainty principle,	11 (414-426)	
	Schroedinger equation		
F 01/12	3. Atomic orbitals and periodic table	11 (426-439)	
M 01/15	No class (MLK Day)		
W 01/17	4. The chemical bond	12 (447-458)	
F 01/19	5. Molecular orbital theory	12 (458-468)	
M 01/22	6. Coordination compounds	12 (469-483)	
W 01/24	7. Spectroscopy: fundamentals and	14 (513-526)	H1
	micro-wave		
F 01/26	ipython workshop	(=== ===)	
M 01/29	8. Infrared and electronic	14 (527-539)	
	spectroscopy	(==================================	
W 01/31	9. Magnetic resonance	14 (539-554)	H2
F 02/02	10. Luminescence, lasers, optical	14 (554-568)	
	activity	0 (7 04)	
M 02/05	11. Ideal and real gases	2 (7-21)	
W 02/07	12. Kinetic gas theory	2 (21-25)	Н3
F 02/09	13. Maxwell distribution laws and	2 (25-31)	
	molecular collisions	• (00 40)	
M 02/12	14. First Law of Thermodynamics	3 (39-49)	
W 02/14	15. Heat capacity and gas	3 (49-59)	
- 00/4/	expansions	o (50.74)	
F 02/16	16. Calorimetry	3 (59-74)	H4
M 02/19	Exam I (in-class)	4 (04 04)	
W 02/21	17. Second Law of	4 (81-86)	
- 00/00	Thermodynamics: Entropy	4 (07 05)	
F 02/23	18. Second Law of	4 (87-95)	
	Thermodynamics: Carnot engine,		
B# 00/0/	entropy change	A (OF 440)	
M 02/26	19. Third Law of Thermodynamics,	4 (95-110)	

W 02/28 F 03/02 M 03/05 W 03/07 F 03/09	Gibbs free energy 20. Phase equilibria 21. Ideal solutions, chem. potential No class (spring break) No class (spring break) No class (spring break)	4 (110-117) 5 (127-131)	Н5
M 03/12	22. Thermodynamics of mixing,	5 (131-142)	
W 03/14 F 03/16 M 03/19	real solutions 23. Colligative properties 24. Electrolyte solutions 25. Colligative properties of electrolyte solutions, biological membranes	5 (142-154) 5 (154-170) 5 (170-181)	Н6
W 03/21 F 03/23	26. Chemical equilibrium27. Ligand binding to macromolecules	6 (193-203) 6 (209-217)	
M 03/26 W 03/28 F 03/30	28. Bioenergetics29. Electrochemistry30. Chemical kinetics	6 (217-229) 7 (sel. p.) 9 (311-324)	Н7
M 04/02 W 04/04 F 04/06	31. Molecularity of reaction32. Effect of temperature and PES33. Reaction rate theories,reactions in solution	9 (324-332) 9 (332-336) 9 (336-342, 346-349)	Н8
M 04/09 W 04/11	Exam II (in-class) Fitting data workshop	ŕ	
F 04/13	34. Enzyme catalysis (guest lecture)	10 (363-372)	
M 04/16	35. Photochemistry and photosynthesis	15 (575-586)	
W 04/18	36. Vision and biological effects of radiation	15 (586-594)	
F 04/20 M 04/23 W 04/25	Scientific paper review Review lecture I Review lecture II		Н9

W 05/03 Final exam