CHM 6461: Introduction to Statistical Thermodynamics, Spring 2017

Instructor: Prof. Russ Bowers
Email: bowers@chem.ufl.edu
Office Hours: Physics Building, Rm. 2360, TR 1-3 pm (other times by appointment)
Meeting Place and Time: Flint Hall Rm 0111, MWF 8th Period (3:00 – 3:50)

Classes begin/end: January 4/April 19

Holidays
Jan.16: MLK day
March 4-11: Spring break

Course Description
This course gives a self-contained exposition of topics that are generally considered fundamental in modern equilibrium statistical thermodynamics. After a brief review of the role of entropy in the macroscopic (thermodynamic) description, the bridge to the microscopic (statistical) point of view is established. Standard subjects, such as the canonical and grand canonical ensembles, partition functions, and quantum statistics are introduced, followed by applications in chemical physics.

Grading scheme
Midterm Exam 25%
Final Exam 25%
Quizzes (2) 30%
Homework 20%

Required Texts

Supplemental Texts

Recommended Software: Wolfram's Mathematica.

Attendance: 100% attendance is expected.

Make-up Exams: Must be arranged in advance of the scheduled date. Allowed only in emergency situations.

UF Grading Policies: https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx
Tentative Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 1-2 | Microscopic and macroscopic variables
Postulate of maximum entropy
Internal constraints and entropy
Quasi-static, reversible, and irreversible processes
Stability criteria |
| 3 | Probability and statistics |
| 4 | Concepts in statistical mechanics
Microcanonical ensemble
Applications |
| 5-6 | Time evolution in quantum mechanics
Density operator and time evolution
Boltzmann distribution
Statistical entropy
Time evolution of statistical entropy
Equilibrium distributions |
| 7-8 | Canonical and grand canonical ensembles
Partition functions
Relationship to thermodynamic potentials |
| | **EXAM 1** |
| 9-11 | Monatomic ideal gas
Quantum phase space
Diatomic and polyatomic molecules
Vibrations in solids
Paramagnetism
Ferromagnetism and Ising model
Spin waves |
| 12-13| Identical particles, quantum statistics
Bose-Einstein and Fermi-Dirac distributions
Maxwell-Boltzmann limit
Ideal Fermi gas |
| 14-15| Chemical equilibrium
Rates of chemical reactions
Absolute rate theory |
| | **EXAM 2** |