CHM 6225 Advanced Principles of Organic Chemistry Spring 2017

Lisa McElwee-White, Sisler 429, 392-8768, <u>lmwhite@chem.ufl.edu</u>
Course materials are on Canvas at https://elearning.ufl.edu/.
"Modern Physical Organic Chemistry," Eric V. Anslyn and Dennis A. Dougherty.
TR 11:45 – 1:40 p.m. in Flint 121 Approximately 10 one-hour periods will be problem sessions.
Due to my travel there will be probably be a couple of Saturday mornings where we have makeup lecture 9-11 am. I provide coffee and donuts. I will let you know the dates of these lectures when I have it all sorted out.
MWF 3:00 - 4:00 p.m.
February 9, March 21, April 27 (final) In addition, there will be a short (5-6 page) original proposal due April 13.
Points PossibleExam 1125Exam 2125Problems50Proposal75Final Exam125Total500

Note: Problem sets are not collected for grading but participation in the problem session is graded.

Prerequisites:

It will be assumed that you are familiar with the basic mechanisms of the reactions taught in sophomore organic and CHM 5224. Also assumed is a minimal knowledge of symmetry and group theory. That is, you should be able to determine the symmetry elements and point group of a molecule. You should also be able to read a character table. If you need help in this regard, the workbook "Molecular Symmetry and Group Theory" by Alan Vincent is on reserve in Marston Science Library. Working programs 1-3 will provide you with more than enough background.

Course Topics:

- I. Philosophy of Mechanistic Study
- II. Direct Characterization of Products and Intermediates
 - A. Product Identification
 - B. Stereochemical Studies
 - C. Isotopic Labeling Studies
 - 1. Symmetry
 - 2. Crossover
 - D. Direct Observation of Intermediates
- III. Thermodynamics and Kinetics
 - A. Energetics and Equilibria
 - B. Group Increments
 - C. Strain
 - D. Molecular Modeling
 - E. Kinetics
 - F. Transition State Theory
 - G. Arrhenius Parameters
- IV. Substituent Effects
 - A. Linear Free Energy Relationships
 - 1. Hammett Plots
 - B. Kinetic Isotope Effects
 - 1. Primary KIE
 - 2. Secondary, α , β , γ KIE
 - C. Equilibrium Isotope Effects
- V. Medium Effects
 - A. Solvent Effects
 - 1. Grunwald-Winstein Plots
 - 2. Solvent Isotope Effects
 - B. Binding Forces
 - 1. Ion Pairing
 - 2. H-bonding

- C. Acid-Base Reactions
 - 1. Acidity Functions
 - 2. Acid/Base Catalysis
 - 3. Brønsted Plots
- VI. Orbital Symmetry Control
 - A. Hückel Molecular Orbitals
 - B. Woodward-Hoffmann, Dewar-Zimmerman, and FMO analyses
 - C. Cycloadditions
 - D. Electrocyclic Processes
 - E. Sigmatropic Reactions
- VII. Molecular Orbital Analysis of Non-Pericyclic Reactions
 - A. Introduction to Perturbation Theory
 - B. Group Orbitals
 - C. Molecular Orbitals from Group Orbitals
 - D. Stereoelectronic Effects
 - 1. Baldwin's Rules
 - 2. Donor-Acceptor Analysis
 - 3. Anomeric Effect
 - E. Hard and Soft Acids and Bases
 - F. Ambident Nucleophiles/Ionic Reactions