Syllabus
CHM 3120L ANALYTICAL CHEMISTRY LABORATORY
Fall, 2016

Faculty Instructor: Dr. Ben Smith, Keene-Flint 264, 392-0256, bwsmith@ufl.edu, Office Hours: M, W, F period 3

Teaching Assistants:
Imran Iftikar  imif6145@ufl.edu
Meghan White  mookers@ufl.edu
Taylor Harmon  taalharm@ufl.edu
Wenbo Peng  wenbopeng@ufl.edu

Undergraduate Teaching Assistants:
Abel Abraham  abelabra@ufl.edu
Alec MacKinnon  alem118@ufl.edu
Ciara Sanon  Csanaon@ufl.edu
Monica Sciturro  msciturro@ufl.edu
Miriam Tarrash  mtarrash@ufl.edu
Melissa Andrews  mmandrews24@ufl.edu
Jacob Daulet  jacobadautel@ufl.edu
Marc Nebb  mnebb1@ufl.edu
Megan Booth  mkbooth@ufl.edu
Megan Lee  mleem@ufl.edu
Maxym Tansky  mtansky@ufl.edu
Kathy Nguyen  knguyen24@ufl.edu

Course Website: Canvas; Please visit the website regularly for announcements and resources. Everything is posted under “Files”
Videos available at: http://www.chem.ufl.edu/ugrad/labanalytical.shtml

Required Materials

Laboratory Manual: No lab manual is required. All materials will be posted on the e-learning site, under Resources.
Laboratory Notebook: Any sensible laboratory notebook, to be used only for this lab, is suitable. You will turn in either carbon copies, or scans or Xerox copies of your notes, retaining the original notebook for your own use. Please be sure that what you submit is legible and clear.
Laboratory Attire: The Essentials: Long, loose-fitting pants, full shirt, shoes which cover the feet, departmentally-approved safety glasses, tie-back for long hair.

Course Objectives

CHM 3120L is an introductory laboratory course in Analytical Chemistry. By the end of the semester, students are expected to demonstrate:
• proper laboratory techniques for quantitative chemical measurements including accuracy on unknowns
• knowledge of a select group of analytical methods
• competence in data analysis and preparation of basic laboratory reports
Grading

Your grade will be determined by the accuracy of your results, the quality of your reports, the quality of your laboratory notes, your competence in essential laboratory manipulations, and your performance on written quizzes.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>6 @ 70</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports and Notes</td>
<td>7 @ 70</td>
<td>490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical Exams</td>
<td>3 @ 40</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written Quizzes</td>
<td>4 @ 45</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1210</td>
</tr>
</tbody>
</table>

The following grading scale will be used:
A (88.0–100%), A- (86.0-87.9%), B+ (81.5-85.9%), B (78.5-81.4%), B- (74.5-78.4%), C+ (71.5-74.4%), C (67.0-71.4%), C- (64.5-66.9%), D+ (60.0-64.4%), D (57.0-59.9%), D- (53.0-56.9%), E (<53.0%).

Notes:

1) Prior to the first lab, visit the e-learning site and review Preliminary Handouts 1-5: laboratory safety, basic lab rules, laboratory notebook, laboratory reports and fundamental techniques. Also read the handout for Experiment #1.

2) A minimum of 30 out of 70 accuracy points will be given if the experiment is performed, the results are calculated correctly and deadlines are met.

3) For each of the six experiments you will write concise formal laboratory reports. Reports are due at the beginning of your laboratory period during the week specified. The laboratory experimental guidelines will contain questions for each experiment. These are designed to help you prepare for the written quizzes. Written answers are not required as part of the reports. A report template is provided for the Soda Ash lab.

4) A 10 point penalty will be assessed each time a result or report is submitted late. The maximum permissible late time is one week.

5) Each student is expected to pass laboratory practical exams on three essential analytical skills (use of the analytical balance/weighing by difference, quantitative transfer/use of a volumetric flask and use of a pipet). The tests will be given by the TA during the regular laboratory period at times mutually acceptable to both the student and the TA.

6) Four written quizzes will be given on the dates specified on the schedule. You will be allowed to see your graded written quiz, but it must be returned to the TA before leaving lab.

7) Attendance is required at all scheduled laboratory periods, unless you are informed otherwise by your TA.

8) Once an unknown result has been submitted, no repeat work on that unknown is allowed.

9) Students are expected to obey the University of Florida Honor Code, detailed at https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/. Violations will be reported to the Office of Student Judicial Affairs.

10) Make-ups will be granted only when justified. If you know ahead that you will have to miss lab, notify your TA and Dr. Smith in advance. If you are sick and cannot reach anyone before lab, you will have to present written evidence of the illness.

11) If you are involved in a laboratory accident, you must go to the infirmary for treatment.

12) Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation.
Lab preparatory videos are available at: [http://www.chem.ufl.edu/ugrad/labanalytical.shtml](http://www.chem.ufl.edu/ugrad/labanalytical.shtml)

### Laboratory Schedule

**Note:** Because of holidays, different sections may be working on different experiments during any given week. Regardless, each section will follow the sequence of activities given below.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Preparation</th>
<th>Lab Work</th>
<th>Quizzes</th>
<th>Results Due</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Begin August 29</strong>&lt;br&gt;Week 1</td>
<td>Read Handouts 1-6&lt;br&gt;Read Experiment 1&lt;br&gt;Watch video: Lab Techniques</td>
<td>Check in Experiment 1&lt;br&gt;Balance use&lt;br&gt;Pipet use/calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Read Handout 7&lt;br&gt;Read Experiment 2</td>
<td>Begin Soda Ash Titrations&lt;br&gt;HCl/NaOH titrations&lt;br&gt;KHP/NaOH titrations</td>
<td></td>
<td>Experiment 1 report and lab notes</td>
</tr>
<tr>
<td>Week 3</td>
<td>Watch ascorbic acid video&lt;br&gt;Read Experiment 3&lt;br&gt;Review handouts to prepare for Quiz 1</td>
<td>Finish Soda Ash Titrations&lt;br&gt;Prep KIO₃ and Na₂S₂O₃&lt;br&gt;Standardize Na₂S₂O₃</td>
<td>Quiz 1 and Deadline for Weighing Practical</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td></td>
<td>Standardize Na₂S₂O₃&lt;br&gt;Ascorbic acid titrations</td>
<td></td>
<td>Soda Ash report and notes due</td>
</tr>
<tr>
<td>Week 5</td>
<td></td>
<td>Finish Ascorbic acid</td>
<td>Quiz 2 Deadline for Pipetting Practical</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Read Experiment 4&lt;br&gt;Watch Spec Fe video</td>
<td>Spectrophotometric Fe</td>
<td></td>
<td>Ascorbic Acid: Report and lab notes</td>
</tr>
<tr>
<td>Week 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Read Experiment 5&lt;br&gt;Watch ISE video</td>
<td>Chloride Ion Selective Electrodes</td>
<td>Quiz 3 and deadline for volumetric flask practical</td>
<td>Spec Fe report and notes</td>
</tr>
<tr>
<td>Week 9</td>
<td>Read Experiment 6</td>
<td>Fluorescence of Quinine; Standard additions</td>
<td></td>
<td>ISE: report and lab notes</td>
</tr>
<tr>
<td>Week 10</td>
<td>Read Experiment 7</td>
<td>Do lab 7: TBA</td>
<td>Quiz 4</td>
<td>Lab 6 due; report and notes</td>
</tr>
<tr>
<td>Week 11</td>
<td></td>
<td>Check Out</td>
<td></td>
<td>Lab 7 due; report and notes</td>
</tr>
</tbody>
</table>